Einstein spaces of positive scalar curvature
نویسندگان
چکیده
منابع مشابه
A Quasifibration of Spaces of Positive Scalar Curvature Metrics
In this paper we show that for Riemannian manifolds with boundary the natural restriction map is a quasifibration between spaces of metrics of positive scalar curvature. We apply this result to study homotopy properties of spaces of such metrics on manifolds with boundary.
متن کاملAperiodic Tilings , Positive Scalar Curvature , and Amenability of Spaces
The object of this paper is to begin a geometric study of noncompact spaces whose local structure has bounded complexity. Manifolds of this sort arise as leaves of foliations of compact manifolds and as their universal covers. We shall introduce a coarse homology theory using chains of bounded complexity and study some of its first properties. The most interesting result characterizes when H ~f...
متن کاملPositive Scalar Curvature
One of the striking initial applications of the Seiberg-Witten invariants was to give new obstructions to the existence of Riemannian metrics of positive scalar curvature on 4– manifolds. The vanishing of the Seiberg–Witten invariants of a manifold admitting such a metric may be viewed as a non-linear generalization of the classic conditions [12, 11] derived from the Dirac operator. If a manifo...
متن کاملOn the Scalar Curvature of Einstein Manifolds
We show that there are high-dimensional smooth compact manifolds which admit pairs of Einstein metrics for which the scalar curvatures have opposite signs. These are counter-examples to a conjecture considered by Besse [6, p. 19]. The proof hinges on showing that the Barlow surface has small deformations with ample canonical line bundle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1969
ISSN: 0022-040X
DOI: 10.4310/jdg/1214429065